V2V-Aided Adaptive FMCW Radar Interference Mitigation

Ernesto Horne, Deniz Kumlu

Research & Development / Teraki GmbH

Outline

- Motivation: Radar in ADAS and ADS
- Radar fundamentals
- Radar interference: How does it take place?
- Proposed method for radar-radar interference mitigation
- Experimental results
- Conclusions

Radar in ADAS and ADS

The characteristics of radars complements ideally with other frequently used sensors.

Radars are versatile sensors that can be configured to different precepting tasks for a wide range of fields of view and use cases.

NXP semiconductors

Vision-RADAR fusion for Robotics BEV Detections: A Survey. Appoorv Singh

Radar in ADAS and ADS

The characteristics of radars complements ideally with other frequently used sensors.

Radars are versatile sensors that can be configured to different precepting tasks for a wide range of fields of view and use cases.

Vision-RADAR fusion for Robotics BEV Detections: A Survey. Appoorv Singh

Challenge: Increased demand leads to higher density of radar sensors in limited electromagnetic spectrum 76-81 GHz.

RADAR BASICS

- 1. **Emit an EM radar-wave**, detect its reflection and compare both waves: gives range
- 2. Repeat many times and obtain information of its speed
- 3. Repeat from several points of view and obtain information of DoA (azimuthal and elevation): 4D matrix: (radial distance, radial speed, az, el)

OVERVIEW **RADAR METHOD**Emit waveform s(t) Objects "targets" reflect incident wave Receive echoes r(t) Receive echoes r(t)

THE **OUTCOME**

4-dimensional radar "cube" with the intensity values in the 3D field of view: range, azimuthal, elevation; and the radial speed of the targets.

Radar-Radar interference

Typical R-R interference scenario

Radar-Radar interference

Typical R-R interference scenario

How does the radar interference affect the signal processing?

- The amplitude of the reflected wave (dashed blue) is reduced in the reflection.
- The aggressor chirp (red) is detected by the victim radar during the listening window.
- After multiplication of the signals the aggressor appears as a frequency variational wave.

Radar-Radar interference

Typical R-R interference scenario

How does the radar interference affect the signal processing?

- The amplitude of the reflected wave (dashed blue) is reduced in the reflection.
- The aggressor chirp (red) is detected by the victim radar during the listening window.
- After multiplication of the signals the aggressor appears as a frequency variational wave.

Outcome issues

- Misinterpretation: Interference can result in reporting ghost targets.
- Signal Masking: Can completely obscure weak, real target reflections.

Proposed Adaptive Interference Mitigation Strategy

- Overall Goal: Enhance radar performance by dynamically adapting interference mitigation.
- Core Contribution: A novel approach to dynamically adapt the Robust Principal Component Analysis (RPCA) λ parameter (Low Rank Sparse Decomposition type LRSD).
- **Key enabler**: Leveraging Vehicle-to-Vehicle (V2V) communication to share aggressor radar parameters.
- Process Flow:
- 1. Convert 1D raw radar signals to 2D using Short-Time Fourier Transform (STFT).
- 2. Apply RPCA to separate target and interference components.
- 3. Reconstruct the interference-free target signal using Inverse STFT (ISTFT).
- 4. Adapt λ based on V2V-shared interference characteristics.

LRSD and RPCA for Signal Separation

The **2D STFT** matrix X is decomposed into two components : X = L + S

- $L \in \mathbb{R}^{M \times N}$: Low-rank component representing the desired target signal.
- $S \in \mathbb{R}^{M \times N}$: Sparse component representing the interference.

RPCA solves this problem via convex optimization:

$$\min_{L,S}(\|L\|_* + \lambda \|S\|_1)$$
 s.t. $X=L+S$

 $\|\cdot\|$ *: Nuclear norm (promotes low rank of L).

 $\|\cdot\|$ 1: L1-norm (promotes sparsity of S).

λ: Penalization parameter, balancing the trade-off.

Adaptive λ via V2V Communication

- Motivation for Adaptive λ : The optimal value of λ is highly dependent on the characteristics of the interference.
- **V2V Communication Role:** Aggressor radar parameters are shared between vehicles.
 - Number of interferers
 - Frequency slopes
 - Signal amplitudes
- **Mechanism:** This real-time shared information allows for dynamic, informed selection of the λ parameter.
- **Benefit:** Improves the robustness and adaptability of RPCA in dynamic interference environments.

Simulated scenarios

Scenarios conditions

- Variation of the target scenario.
- Variation of the aggressor conditions:
 #of aggressors, chirp slopes,
 amplitude of the aggressor, etc.

Figure: FFT of the wave signals related with: **Signal, target and target'.** The spikes' position indicate the distance of the targets

Simulated scenarios

Scenarios conditions

- Variation of the target scenario.
- Variation of the aggressor conditions:
 #of aggressors, chirp slopes,
 amplitude of the aggressor, etc.

Analisis

Signal = target + interference Signal' = RPCA (Signal) = target' + interference'

The result obtained after applying RPCA method are compared with the ground truth state of the scenario: the **targets** signal

MSE (target', target)

Figure: FFT of the wave signals related with: **Signal, target and target'.** The spikes' position indicate the distance of the targets

Simulated scenarios

Scenarios conditions

- Variation of the target scenario.
- Variation of the aggressor conditions:
 #of aggressors, chirp slopes,
 amplitude of the aggressor, etc.

Analisis

Signal = target + interference Signal' = RPCA (Signal) = target' + interference'

The result obtained after applying RPCA method are compared with the ground truth state of the scenario: the **targets** signal

MSE (target', target)

Figure: FFT of the wave signals related with: **Signal, target and target'.** The spikes' position indicate the distance of the targets

Optimal \(\lambda\) vs. Interference Characteristics


```
Signal = target + interference
Signal' = RPCA (Signal)
= target' + interference'

MSE (target', target)
```


Optimal λ vs. Interference Characteristics

= target' + interference'

Key Finding: The optimal λ value is directly influenced by interference complexity.

Observation:

complexity

- 1. Lower λ values are suitable for simpler interference (fewer interferers, lower amplitudes).
- 2. Higher λ values are required for more challenging interference scenarios.

Conclusion: This dependency underscores the importance of V2V communication for adaptive λ tuning.

Conclusion

- Demonstrated that optimal penalization parameter (λ) in RPCA is strongly influenced by interfering radar characteristics.
- Showed that V2V communication can significantly enhance the robustness of interference mitigation strategies.
- The proposed approach effectively improves weak target signal reconstruction even under challenging interference conditions.
- Highlights the potential for advancing radar system performance in dense, dynamic environments, supporting advanced autonomous vehicle systems.