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Abstract—This paper addresses the challenge of interference
mitigation in frequency modulated continuous wave (FMCW)
radar systems by leveraging signal processing techniques and
vehicle-to-vehicle (V2V) communication. The proposed method
utilizes the short-time Fourier transform (STFT) to convert 1D
radar signals into a 2D domain, enabling the application of robust
principal component analysis (RPCA) for interference mitigation.
A novel approach is proposed to dynamically adapt the RPCA
A parameter by leveraging aggressor radar parameters shared
via V2V communication. Simulation results demonstrate that
increasing the number of interfering radars and their amplitudes
necessitates higher )\ values for effective interference mitigation.
Furthermore, the findings reveal that the incorporation of inter-
fering radar parameters enhances signal reconstruction quality,
particularly for weak target signals that are otherwise masked
by interference. These preliminary results highlight the potential
of adaptive \ selection, informed by V2V communication, to
improve radar performance in real-time and support advanced
autonomous vehicle systems.

Index Terms—radar, interference, RPCA, V2V communication

I. INTRODUCTION

Radar technologies have become increasingly popular in
vehicles due to their sensing and detection capabilities com-
bined with low cost. With the growing demand for autonomous
vehicles, the use of radar sensors has increased, despite the
limited electromagnetic spectrum allocated to the industry
between 76 and 81 GHz.

Today, many cars are equipped with multiple radar sensors.
When multiple vehicle sensors are active, it is unavoidable to
observe interference between these radars. This interference
has a increasingly adverse effect on radar detections, especially
critical in dense traffic situations [1].

The principle of radar operation is rather simple. Auto-
motive radars function as both transmitters and receivers of
electromagnetic (EM) waves in the radar spectrum. The radar
emits a wave that propagates through the air until it encounters
an object, where it is partially reflected back to the sensor (and
in many other directions). The target is identified through the
physical characteristics of the reflected EM wave.

The process of identifying the reflected EM wave can vary,
but what is common to almost all automotive radars is the
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use of frequency-modulated waveforms. The frequency of
the waveform increases linearly with time to form what is
known as a chirp. This particular waveform shape allows for
comparison of the emitted wave with the reflected waves using
heterodyne detection.

The radial distance between the sensor and the object is
given by the frequency of the resulting plane wave. This
concept can be extended to multiple targets by considering
the resulting wave as a sum of multiple plane waves, each
with a given frequency associated with the distance of the
reflecting object. Through standard methods, such as the fast
Fourier transform (FFT), the frequency spectrum can be easily
obtained to identify the radial distance of the targets. This is
apparent in the temporal domain. However, the power of the
wave, and thus its frequency, is affected by several factors
such as propagation, reflection, scattering, etc. [1].

In the case of multiple radar sources, parasitic signals (inter-
ference) from aggressor radars can be interpreted as reflections
from the radar’s own source. This results in interference or
ghost targets due to misinterpretation of the frequency of the
interfered wave. Additionally, because the intensity of the
interfered wave is not decreased by any reflection, it can
completely obscure the signal that contains real reflections [2].

This study explores the relationship between the robust
principal component analysis (RPCA)’s A penalization pa-
rameter [3], specification of frequency modulated continuous
wave (FMCW) radars and interference characteristics. Us-
ing vehicle-to-vehicle (V2V) communication [4], key radar
parameters, such as the number of interferences, frequency
slopes, and signal amplitudes, are shared between vehicles
to guide the selection of the optimal A. The proposed in-
terference mitigation strategy involves transforming 1D raw
radar signals into 2D representations via a a short-time Fourier
transform (STFT), applying RPCA to remove interference, and
reconstructing the target signal using inverse STFT (ISTFT).
The results show that \ is highly dependent on interference
characteristics, with lower values suitable for single interferers
and higher values required for multiple interferers. This depen-
dency can be modeled through polynomial fitting, enabling
real-time A\ adaptation based on shared radar parameters, thus
improving the performance and adaptability of RPCA.
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II. RELATED WORKS

Interference mitigation in FMCW radar systems has been
extensively explored using both signal processing methods
and advanced machine learning techniques. Brooker [2] high-
lighted the significance of addressing mutual interference in
FMCW radar systems, emphasizing its impact on reliable radar
operations in dense environments. Fischer et al. [5] demon-
strated that interference significantly affects the detection of
weak targets in urban settings, raising the noise floor and
complicating target identification. These foundational studies
have paved the way for developing advanced interference
mitigation methods.

Recent approaches have integrated sparse reconstruction and
adaptive filtering techniques to mitigate interference. Correas-
Serrano and Gonzalez-Huici [6] introduced orthogonal match-
ing pursuit (OMP) for sparse reconstruction of chirplets,
enabling effective separation of interference from target signals
with minimal distortion. Similarly, Barjenbruch et al. [7]
proposed an interference detection and cancellation method
based on time-frequency analysis, leveraging the maximally
stable extremal regions (MSER) algorithm to identify and
suppress interference. This approach significantly enhanced
the detection of weak targets obscured by interference.

Machine learning-based techniques have also been utilized
to improve radar signal processing. Liu et al. [8] introduced
the interference recognition network (IRNet), which leverages

TABLE I
SCENARIO’S KPIS: NUMBER OF INTERFERERS, FREQUENCY SLOPES,
AND SIGNAL AMPLITUDES

Scenario | # of Interferers Frequency Slopes (Hz/s) Signal Amplitud
1 1 2.8 x 10] [4.5]
2 2 [3.0 x 10T, —1.8 x 10'7] [5.0,6.0]
3 3 [3.3 x 1077, —1.9 x 10TT, —1.5 x 1017] [6.0,5.5,6.5]

25 3 35 4

Time (s) 10*

©)

Interfered signals from scenarios (a)—(c) with varying numbers of interferers, frequency slopes, and amplitudes.

autocorrelation features to identify and mitigate interference
in automotive radar systems. This method showcases the
potential of neural networks in handling complex interference
patterns in challenging scenarios. Additionally, Wang et al. [9]
applied sparse and low-rank Hankel matrix decomposition
to effectively mitigate interference in radar signals, achiev-
ing robust results in high-interference environments. These
contributions highlight the importance of combining classical
and data-driven methods to achieve robust radar interference
mitigation.

III. DATASET PREPARATION

The simulated dataset consists of three distinct scenarios
designed to evaluate interference mitigation techniques in
radar systems. Each scenario varies in the number of inter-
ferers, frequency slopes, and signal amplitudes, allowing for
comprehensive analysis of interference characteristics. The
dataset specifications are detailed in Table I outlines the
parameters for each scenario, which were selected to introduce
variability, while deliberately increasing the complexity of the
interference. The corresponding interfered signals for these
scenarios are visualized in Figure 1, illustrating the impact of
these interference configurations. The primary purpose of this
dataset is to serve as a benchmark for exploring and validating
the dependency of the RPCA A parameter on interference
features, facilitating the development of adaptive interference
mitigation strategies in vehicular radar systems.

IV. PROPOSED METHOD

Interference in radar signals is generally much stronger than
the desired reflected signal, as described by the Friis space
propagation equation. The nature and impact of interference
are influenced by the total interference power and the level of
synchronization between the victim and the interfering radar



(aggressor radar). Consequently, the reflection from the target
can be significantly dominated by interference.

The received radar signal is represented as a 1D vector,
denoted by x, with dimensions N x 1. This signal can be
either real or complex and contains coefficients with varying
amplitudes.

To apply low-rank and sparse decomposition (LRSD) based
matrix decomposition techniques, the received 1D radar signal
must be converted into a 2D matrix form. It is crucial to
represent the target or interference as a sparse component in
the 2D matrix. In FMCW, the beat signal is typically sparse in
the frequency domain. However, interferences at the Analog-
to-Digital Converter (ADC) output generally exhibit sparsity in
the time, frequency, or time-frequency domains under various
scenarios.

The transformation of the received 1D radar signal z into
a 2D matrix form, represented by X, can be achieved via
methods such as the STFT.

A. Short-Time Fourier Transform (STFT)

The STFT is a powerful tool for analyzing non-stationary
signals by providing a time-frequency representation. The
STFT of a 1D signal z(¢) is defined as:

o
X, f)= / z(T)w(r —t)e 2™ dr (1)

where w(7 — t) is a window function that slides along the
time axis ¢. The choice of the window function and its length
affects the resolution of the STFT. The STFT converts the
1D signal into a 2D time-frequency representation, making it
suitable for LRSD methods.

To apply the STFT to the 1D radar signal x, the signal
is divided into overlapping segments. Each segment is win-
dowed, and the Fourier Transform is applied to each windowed
segment. This results in a 2D matrix where one dimension
represents time and the other represents frequency. The STFT
tranform of the scenario 3 is shown in Figure 2(a). This matrix
can then be processed using LRSD techniques.

B. Low-Rank and Sparse Decomposition (LRSD)

In LRSD methods, the input matrix is modeled as the
superposition of multiple signals corresponding to the low-
rank and sparse components, which can be formulated as [3]:
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Fig. 2. 2D representation of the signal (a) STFT transform of the received
signal with interference, (b) RPCA reconstruction of target signal.

X=L+S )

Here, L € RM*N represents the target component, and
S € RM*N represents the interference component. The input
matrix is obtained by applying the STFT to a 1D ADC
signal, resulting in a 2D time-frequency representation, where
M denotes the number of time frames corresponding to the
number of overlapping windows used in the STFT, and NV
denotes the number of frequency bins determined by the
FFT size, reflecting the spectral resolution. Both L and S
can be recovered from the input data matrix X € RM*N
through rank minimization techniques. Given the non-convex
nature of this problem, a convex solution can be approximated
via nuclear norm minimization. RPCA [3] addresses this
minimization problem as follows:

mip L.+ AIS], st X =L+ 3)

In this equation, ||-||, denotes the nuclear norm, ||-||, stands
for the L1-norm, and ) is a penalization parameter. RPCA is
computationally intensive due to the iterative singular value
decomposition (SVD) operations involved. For efficient rank
minimization, one may employ non-convex matrix factoriza-
tion techniques for faster low-rank recovery.

Figure 2(b) illustrates the reconstructed target component
of the signal, where the interference-mitigated 1D signal is
recovered through the application of the ISTFT transformation.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the STFT and RPCA-based
interference mitigation strategy, we conducted a series of
experiments on the simulated scenarios. Figure 3 demonstrates
the FFT results of the raw signal with interference for the
most complex scenario, the original target signal, and the
reconstructed signal obtained after applying RPCA (scenario
IIT). The top subplot shows the FFT of the raw signal with
interference, where a weak target is masked by the elevated
noise floor caused by strong interference. The middle subplot
represents the FFT of the original target signal (without
interference), revealing clear peaks corresponding to the actual
targets.

After applying RPCA with the optimal A value, the bottom
subplot highlights the FFT of the reconstructed signal. It can
be observed that the weak target that was previously obscured
by interference is now clearly visible. The results indicate
that RPCA effectively mitigate interference, reconstructing the
weak radar target and closely approximating the original target
signal shape. This emphasizes the effectiveness of RPCA in
reconstructing target signals, even under challenging interfer-
ence conditions.

Figure 4 further evaluates the relationship between the A
parameter and reconstruction quality by showing the mean
squared error (MSE) for various A\ values across different
scenarios. Each subplot corresponds to a different interference
scenario described in Figure 1, where the number of interfer-
ers, frequency slopes, and signal amplitudes vary. In each case,
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Fig. 3. FFT results of the Scenario III (a) signal with interference, (b) original target signal (c) reconstructed target signal via RPCA.
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Fig. 4. Best A vs. MSE for RPCA based target reconstruction

a grid search for the optimal \ was performed to minimize the
MSE between the reconstructed signal and the original target
signal and optimal points are shown in the Figure 4.

The obtained results demonstrate that the optimal A value
is directly effected by the interference characteristics and
agressor radar spesifications. Scenarios with fewer interferers
and lower amplitudes correspond to smaller A values, while
scenarios with more challenging interference require larger
A values for effective mitigation. This dependency highlights
the importance of adaptively tuning A based on interference
characteristics shared via V2V communication.

VI. CONCLUSION

This study demonstrated that the selection of the optimal
penalization parameter in LRSD methods, specifically RPCA,
is influenced by the characteristics of interfering radars. By
utilizing V2V communication to share parameters such as
the number of interferers and their spesifications, we showed
that the robustness of interference mitigation strategies can be
enhanced. The proposed approach effectively improves weak
target reconstruction, showcasing its potential for advancing
radar system performance in challenging environments.
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